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§1 9

Chapter I. Playing with plane curves

§1. Plane conics

I start by studying the geometry of conics as motivation for the projective
plane P2 Projective geometry is usually mentioned in 2nd year undergraduate
geometry courses, and I recall some of the salient features, with some emphasis on
homogeneous coordinates, although I completely ignore the geometry of linear
subspaces and the ‘cross-ratio’. The most important aim for the student should be to
grasp the way in which geometric ideas (for example, the idea that ‘points at infinity’
correspond to asymptotic directions of curves) are expressed in terms of
coordinates. The interplay between the intuitive geometric picture (which tells you
what you should be expecting), and the precise formulation in terms of coordinates
(which allows you to cash in on your intuition) is a fascinating aspect of algebraic
geometry.

(1.1) Example of a parametrised curve. Pythagoras’ Theorem says that, in the
diagram

. X24v2 - 72

X

so (3,4,5) and (5, 12, 13), as every ancient Egyptian knew. How do you find all
integer solutions? The equation is homogeneous, so that x = X/Z, y = Y/Z gives
the circle C: (x2 + y2 =1) c R2, which can easily be seen to be parametrised as

x=2A/A2+1), y=A2Z-1)/(A2+1), where A=x/(1-y);
so this gives all solutions:
X=20m, Y=02-m2, Z=02+m2 with £ me Z coprime,

(or each divided by 2 if £ m are both odd). Note that the equation is
homogeneous, so that if (X, Y, Z) is a solution, then sois (AX, AY, AZ).
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Maybe the parametrisation was already familiar from school geometry, and in
any case, it's easy to verify that it works. However, if I didn’t know it already, I
could have obtained it by an easy geometric argument, namely linear projection
from a given point:

P=@©1)

P=(0,1)€ C, andif A € Q is any value, then the line L) through P with slope
—A meets C in a further point Q3. This construction of a map by means of linear
projection will appear many times in what follows.

(1.2) Similar example. C: (2X2 + Y2 = 5Z2). The same method leads to the
parametrisation R — C given by

251 2o 1
X = , Yy = >
1420

1+2k2

This allows us to understand all about points of C with coefficients in R, and
there’s no real difference from the previous example; what about @ ?

Proposition. If (3, b, c) € Q satisfies 2a2 +b2 = 5¢2 then (a, b, c) = (0,0,0).

Proof. Multiplying through by a common denominator and taking out a common
factor if necessary, I can assume that a, b, ¢ are integers, not all of which are
divisible by 5; alsoif 5la and 5|b then 25[5c2, so that 5|c, which
contradicts what I've just said. It is now easy to get a contradiction by considering
the possible values of a and b mod 5: since any squareis 0,1 or 4 mod 5,
clearly 2a2 + b2 is one of 0+1, 0+4, 240, 2+1, 2+4, 8+0, 8+1 or 8+4 mod 5,
none of which can be of the form 5¢2. Q.E.D.
Note that this is a thoroughly arithmetic argument.
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(1.3) Conicsin R2. A conicin R2 isa plane curve given by a quadratic equation
qxy) = ax2+bxy+cy2 +dx+ey+f = 0.

Everyone has seen the classification of nondegenerate conics:

(a) ellipse (b) parabola (c) hyperbola

[
[ 8]
[\
N

X
_2+ =1 2
a

«
1l
mN| >
<

c"l'~<
(54

in addition, there are a number of peculiar cases:

(d) single point given by x2+y2 = 0;

(e, f,g) empty set given by any of the 3 equations: (e) x2 +y2 = -1, (f) x2
= -1 or (g) 0= 1. These three equations are different, although they define the
same locus of zeros in R2; consider for example their complex solutions.

(h) Iline x'=0;

(i) line pair xy = 0;

(j) parallel lines x(x - 1) =0;

(k) 'double line’ x2 = 0;
you can choose for yourself whether you'll allow the final case:

(1) whole plane given by 0 = 0.

(1.4) Projective plane. The definition ‘out of the blue”

P2R = {lines of R3 through origin }

{ratios X:Y:Z}
(R3\ {0})/~, where (X,Y,Z)~ (X, Y, AZ) if Ae R\ {0}.

(The sophisticated reader will have no difficulty in generalising from R3 to
an arbitrary vector space over a field, and in replacing work in a chosen coordinate
system with intrinsic arguments.)
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Torepresentaratio X :Y :Z forwhich Z#0, Icanset x=X/Z, y =
Y/Z; this simplifies things, since the ratio corresponds to just two real numbers. In
other words, the equivalence class of (X, Y, Z) under ~ has a unique
representative (x,y, 1) with 3rd coordinate = 1. Unfortunately, sometimes Z
might be =0, so that this way of choosing a representative of the equivalence class
is then no good. This discussion means that [PZIR contains a copy of R2. A

L
/ T @=1
in R
/ i

picture:

R2 ¢, R3I\{0} » P2R by (x,y)  (x,y,1)

the general line in R3 through O is not contained in the plane (Z = 0), so that it
meets (Z = 1) in exactly one point, which is a representative for that equivalence
class. The lines in (Z = 0) never meet (Z = 1), so they correspond not to points of
R2, but to asymptotic directions, or to pencils of parallel lines of R2; so you can
think of IP2[R as consisting of R2 together with one ‘point at infinity’ for every
pencil of parallel lines. From this point of view, you calculate in R2, try to guess
what's going on at infinity by some kind of ‘asymptotic’ argument, then (if
necessary), prove it in terms of homogeneous coordinates. The definition in terms of
linesin R3 makes this respectable, since it treats all points of lP2[R on an equal
footing.

Groups of transformations are of central importance throughout geometry;
properties of a geometric figure must be invariant under the appropriate kind of
transformations before they are significant. An affine change of coordinates in [R2
is of the form T(x) = Ax + B, where x = (x,y) € {R2, and A isa 2x2 invertible
matrix, B a translation vector; if A is orthogonal then the transformation T is
Euclidean. As everyone knows, every nondegenerate conic can be reduced to one
of the standard forms (a-c) above by a Euclidean transformation. It is an exercise
to the reader to show that every conic can be reduced to one of the forms (a-1) by
an affine transformation.
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A projectivity, or projective transformation of IPZIR is of the form
TX) = MX, where M is an invertible 3 x 3 matrix. It's easy to understand the
effect of this transformation on the affine piece R2c PZ[R: as a partially defined
map R2-- R2, it is the fractional-linear transformation

X X
— (A +B)/(cx +dy +e),

Yy y
A B
.....
cdie

T is of course not defined when c¢x + dy + e = 0. Perhaps this looks rather
unintuitive, but it really occurs in nature: two different photographs of the same
(plane) object are obviously related by a projectivity; see for example [Berger, 4.7.4]
for pictures. So a math graduate getting a job interpreting satellite photography
(whether for the peaceful purposes of the Forestry Commission, or as part of the
vast career prospects opened up by President Reagan’s defence policy) will spend a
good part of his or her time computing projectivities.

Projective transformations are implicitly in use throughout these notes,
usually in the form by a suitable choice of coordinates, I can assume ..".

where

(1.5) Equation of a conic. The inhomogeneous quadratic polynomial
qix,y) = ax2+bxy +cy2+dx+ey+f

corresponds to the homogeneous quadratic

QXX,Y,Z) = aX2 +bXY +cY2 +dXZ +eYZ + {Z2;
the correspondence is easy to understand as a recipe, or you can think of it as the
bijection q «— Q given by

qx,y) = QX/Z,Y/Z,1) with x=X/Z, y=Y/Z
and inversely,

Q = Z2qX/Z,Y/2).

A conic C c P2 is the curve given by C: (Q(X, Y, Z) = 0), where Q isa
homogeneous quadratic expression; note that the condition Q(X, Y, Z) =0 is well
defined on the equivalence class, since Q(AX) = A2Q(X) forany A € R. Asan
exercise, check that the projective curve C meets the affine piece R2 in the affine
conic given by (q = 0).
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'Line at infinity' and asymptotic directions. Points of P2 with Z =0

correspond to ratios (X : Y : 0). These points form the ‘line at infinity’, a copy of

Pl =R U {oo} (since (X:Y) > X/Y defines a bijection Pl — R L {oo}).
Alinein P2 is by definition given by L: (aX + bY +¢Z = 0), and

L passes through (X,Y,0) ¢ aX+bY =0.

In affine coordinates the same line is given by ax + by + ¢ = 0, so that all lines with
the same ratio a: b pass through the same point at infinity. This is called ‘parallel
lines meet at infinity .

Examples. (a) The hyperbola (x2/a2 - y2/b2 =1) in R2 corresponds in [PZIR
to C: (X2/a2 - Y22 = Z2); clearly this meets (Z = 0) in the two points
(b,+a,0) e [quq, corresponding in the obvious way to the asymptotic lines of the
hyperbola.

Note that in the affine piece (X # 0) of IPZIR, the affine coordinates are
u=Y/X,v=2/X, sothat C becomes the ellipse (u2/b2 +v2 = 1/a2). See
Ex. 1.7 for an artistic interpretation.

(b) The parabola (y = mx2) in R2 corresponds to C: (YZ = mX2) in
[Pzp; this now meets (Z = 0) at the single point (0, 1, 0). So in P2, the 'two
branches of the parabola meet at infinity’; note that this is a statement with intuitive
content (maybe you feel it's pretty implausible?), but is not a result you could arrive
at just by contemplating within R2 - maybe it's not even meaningful.

(1.6) Classification of conics in P2. Let k be any field of characteristic # 2;
recall two results from the linear algebra of quadratic forms:

Proposition (A). There are natural bijections

{ homogeneous } _ {quad. forms} bij (symmetric bilinear}

quadratic polys K 5k forms on k°
given in formulas by
a b d

aX2 + 2bXY +cY2 + 2dXZ + 2eYZ + fZ2 «—— b c e
d e f
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A quadratic form is nondegenerate if the corresponding bilinear form is
nondegenerate, that is, its matrix is nonsingular.

Theorem (B). Let V be a vector space over k and Q: V — k a quadratic form;
then there exists a basis of V such that

Q = g1x12 +£2x92 + .. enxp2,

with gj € k.

(This is proved by Gram-Schmidt orthogonalisation, if that rings a bell.)
Obviously, for A € k\ {0} the substitution x;+» Ax; takes €; into 7\,-28i.

Corollary. In a suitable system of coordinates, any conic in IPZIR is one of the
following:

(o) nondegenerate conic, C: X2+Y2-72=0),
(B) empty set, given by (X2 + Y2 +72 =0);
(y) line pair, given by (X2 - Y2 = Q);
(8) one point (0,0, 1), givenby (X2 +Y2 =0);
(€) double line, given by (X2 = 0).
(Optionally you have the whole of IP2|R given by (0 =0).)

Proof. Any real number € iseither O, or * a square, so that I only have to
consider Q as in the theorem with & =0 or * 1. In addition, since I'm only
interested in the locus (Q = 0), I'm allowed to multiply Q through by -1. This
leads at once to the given list.  Q.E.D.

There are two points to make about this corollary: firstly, the list is quite a lot
shorter than that in (1.3); for example, the 3 nondegenerate cases (ellipse,
parabola, hyperbola) of (1.3) all correspond to case (a), and the 2 cases of
intersecting and parallel line pairs are not distinguished in the projective case.
Secondly, the derivation of the list from general algebraic principles is much
simpler.

(1.7) Parametrisation of a conic. Let C be a nondegenerate, nonempty conic of
IPZIR. Then by Corollary 1.6, taking new coordinates (X+Z, Y, Z-X), C 1is
projectively equivalent to the curve (XZ = Y2); this is the curve parametrised by
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o:Plg — CcPlR,
(U:V) —  (U2:UV:V2).

Remarks 1. The inverse map ¥: C — IP1[R is given by (X:Y:Z) > (XIY) =
(Y:Z); here the left-hand ratio is defined if X # 0, and the right-hand ratio if
Z # 0. In terminology to be introduced later, @ and ‘¥ are inverse isomorphisms
of varieties.

2. Throughout §§1-2, nonempty nondegenerate conics are tacitly assumed to be
projectively equivalent to (XZ - Y2); overa field of characteristic # 2, this is
justified in Ex. 1.5. (The reader interested in characteristic 2 should take this as the
definition of a nondegenerate conic.)

(1.8) Homogeneous form in 2 variables. Let F(U, V) be a nonzero
homogeneous polynomial of degree d in U, V, with coefficients in a fixed field k;
(I will follow tradition, and use the word form for homogeneous polynomial’):

F(U,V) = aqUd +a4_qUd-1v + a;uivd-i 4 agvd
F has an associated inhomogeneous polynomial in 1 variable,
f(u) = aqud +aq_qud-1+ . aul +.. ap.
Clearly for o €k,
fla)=0 = (u-o | fu) & U-aV)]|FU,V) > Fa,1)=0;

so zeros of f correspond to zeros of F on P1 away from the point (1, 0), the
‘point o = c0’. What does it mean for F to have a zero at infinity?

F1,0)=0 & aj=0 & degf<d

Now define the multiplicity of a zero of F on P1 to be
(i) the multiplicity of f at the corresponding o € k;
or (ii) d-degf if (1,0) is the zero.
So the multiplicity of zero of F at a point (c, 1) is the greatest power of (U - oV)
dividing F, and at (1, 0) it is the greatest power of V dividing F.

Proposition. Let F(U, V) be a nonzero form of degree d in U, V. Then F has at
most d zeros on P1; furthermore, if k is algebraically closed, then F has exactly
d zeros on P! provided these are counted with multiplicities as defined above.
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Proof. Let my, be the multiplicity of the zero of F at (1, 0); then by definition,
d - my, is the degree of the inhomogeneous polynomial f, and the proposition
reduces to the well-known fact that a polynomial in one variable has at most deg f
roots. Q.E.D.

Note that over an algebraically closed field, F will factorise as a product F =
IA™ of linear forms A; = (ajU+ bjV), and treated in this way, the point (1, 0)
corresponds to the form Ay, = V, and is on the same footing as all other points.

(1.9) Easy cases of Bézout's Theorem. Bézout's theorem says that if C and D
are plane curves of degree deg C = m, deg D = n, then the number of points of
intersection of C and D is mn, provided that (i) the field is algebraically closed;
(ii) points of intersection are counted with the right multiplicities; (iii) we work in
P2 to take right account of intersections ‘at infinity’. See for example {Fulton,
p- 112] for a self-contained proof. In this section I am going to treat the case when
one of the curves is a line or conic.

Theorem. Let L < lek be a line (respectively C < lP2k a nondegenerate conic),
andlet DcC I}'-’Zk be a curve defined by D : (G4(X, Y, Z) = 0), where G is a form
of degree d in X,Y,Z. Assume that L ¢ D (respectively, C ¢ D); then

#{LNAD} £d  (respectively #{C N D} < 2d).

In fact there is a natural definition of multiplicity of intersection such that the
inequality still holds for ‘number of points counted with multiplicities’, and if k is
algebraically closed then equality holds.

Proof. Aline LC IP2k is given by an equation A =0, with A a linear form; for
my purpose, it is convenient to give it parametrically as

X=aU,V), Y=bU,V), Z=¢cU,V),

where a, b, ¢ are linear forms in U, V. So for example, if A = aX +BY +vZ, and
¥ # 0, then L can be given as

X=U, Y=V, Z=-(a/Y)U - B/YV.

Similarly, as explained in (1.7), a nondegenerate conic can be given parametrically
as

X=al,V), Y=bU,V), Z=c(U,V),
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where a, b, ¢ are quadratic forms in U, V. This is because C is a projective
transformation of (XZ = YZ2), which is parametrically (X, Y, Z) = (U2, UV, V2),
so C is given by

U2

X
Y|=M|UV
Z

VZ

where M is a nonsingular 3 x 3 matrix.

1 parametrised
P ’ ) line
P
parametrised
/= [O] =

Then the intersection of L (respectively C) with D is given by finding the values
of the ratios (U : V) such that

F(U, V) = Gg4(a(U,V), b(U,V), c(U,V)) = 0.

But F is a form of degree d (respectively 2d) in U, V, so the result follows by
(1.8).

(1.10) Corollary. If Pq,.Ps5€ IP2|R are distinct points such that no 4 are
collinear, then there exists at most one conic through Pj,.. Ps.

Proof. Suppose by contradiction that C1 and Cp are conics with C{ # Co such
that

C1nCy o {Py,..Psh

C1 is nonempty, so that if it's nondegenerate, then by (1.7), it's projectively equi-
valent to the parametrised curve

¢ = {WZuv,v)|u,vepPl}
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by (1.9), C1 < Cy. Nowif Q is the equation of Cp, then Qa(U2,UV,V2)=0
forall (U,V)e P1, and an easy calculation (see Ex. 1.6) shows that Q7 isa
multiple of (XZ - Y2); this contradicts C1 #Ca.

Now suppose C1 is degenerate; by (1.6) again, it's either a line pair or a
line, and one sees easily that

C1=LgulLlq, Co=LguLy,
with L4, Ly distinct lines. Then C{ nCy =Lgu (L1 nLj):

leIJl

7 <

thus 4 points out of P1,.. P5 lie on L, acontradiction. Q.E.D.

(1.11) Space of all conics. Let
Sy = { quadratic formson R3} = {3x3 symmetric matrixes } = RO.

If Qe Sy, write Q = aX2 +2bXY +..fZ2; then for Pg = (Xq, Y0, Z0) € P2R,
consider the relation Pge C: (Q = 0). This is of the form

QX0 Y0, Zp) = aX(2+2bXoYq + .. fZg2 = O,
and for fixed P, this is a linear equationin (a, b,.. f). So
SoPg) = {Qe Sz [ QP =0} = RScs, = RO

isa 5-dimensional hyperplane. For P1,..Pp € P2, define similarly
So(P1,.Pp) = {Qe Sy | QP)=0fori=1,.nk

then there are n linear equations in the 6 coefficients (a, b,.. f) of Q. This gives
the result:

Proposition. dim So(P1,..Pp) = 6 -n.
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We can also expect that ‘equality holds if Pq,.. Py, are general enough’. More
precisely:

Corollary. If n<5 andno 4 of P4,.. P, are collinear, then

dim S(P1,..Py) = 6 -n.

Proof. Corollary 1.10 implies that if n =5, dim S»(P1,.. P5) <1, which gives the
corollary in this case. If n < 4, then I can add in points Ppi1,.. P5 while
preserving the condition that no 4 points are collinear, and since each point
imposes at most one linear condition, this gives

1 = dim $7(P1,..P5) 2 dim S»(P1,..Pp) - (5-n). Q.ED.
Note that if 6 points P1,..Pg€ PZIR are given, they may or may not lie on

a conic.

(1.12) Intersection of two conics. As we have seen above, it will often happen that
two conics meet in 4 points:

conversely according to Corollary 1.11, given 4 points P1,.. P4 € P2, under
suitable conditions Sp(P{1,.. P4) is a 2-dimensional vector space, so choosing a
basis Q1,Q7 for So(P1,..P4) gives 2 conics Cq,Cy suchthat C{1 n Cy =
{P1,.. P4}. There are lots of possibilities for multiple intersections of nonsingular
conics:
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D C

2P1+P2+P3 2P +2Q
3P+Q 4p

see Ex. 1.9 for suitable equations.

(1.13) Degenerate conics in a pencil.
Definition. A pencil of conics is a family of the form

Cop: AQ1+pQ2=0);

each element is a plane curve, depending in a linear way on the parameters (A, 1);
think of the ratio (A : i) as a point of P1.

Looking at the examples, one expects that for special values of (A : p) the
conic C(?L,p.) is degenerate. In fact, writing det(Q) for the determinant of the
symmetric 3 x 3 matrix corresponding to the quadratic form Q, it is clear that

C(\,p) isdegenerate = det(AQf +pQ2) =0.
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Writing out Q1 and Q) as symmetric matrixes expresses this condition as

a b d a’ b d
FA,p) = det [A|b ¢ e]+pn|b ¢ ¢ = 0.
d e f d e f

Now notice that F(A, i) is a homogeneous cubic formin A, pt. In turn I can apply
(1.8) to F to deduce:

Proposition. Suppose C(X,u) is a pencil of conics of Isz, with at least one non-
degenerate conic (so that F(A, ) is not identically zero). Then the pencil has at
most 3 degenerate conics. If k = R then the pencil has at least one degenerate
conic.

Proof. A cubic form has <3 zeros. Also over R, it must have at least one zero.

(1.14) Worked example. Let P1,..P4 be 4 points of P2R such thatno 3 are
collinear; then the pencil of conics C(j ;) through Pq,.. P4 has 3 degenerate
elements, namely the line pairs L{9 + L34, L13+ L34, L14 + L23, where Lj is
the line through Pj, Pj:

Next, suppose that I start from the pencil of conics generated by Q1 = Y2 +1Y +
sX+t and Qg =Y - X2, and try to find the points P1,..P4 of intersection.
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2
P1 = (al,al)

Y =X

Y2+rY+sX+t=O

This can be done as follows: (1) find the 3 ratios (A : ) for which C( Au) are
degenerate conics. Using what has been said above, this just means that I have to
find the 3 roots of the cubic

0 0 s/2 -1 0 0
FA,u) = det |Al O 1 /2| +u{0 0 172
s/2 1/2 t 0 1/2 0

= 1623 + @e-r2220 - 22 - p3),

(2) Separate out 2 of the degenerate conics into pairs of lines (this involves solving
2 quadratic equations). (3) The 4 points P;j are the points of intersection of the

lines.
This procedure gives a geometric interpretation of the reduction of the

general quartic in Galois theory (see for example [van der Waerden, Algebra,
Ch. 8,8§64]): let k be afield, and f(X) = X4 +1X2 +sX +te kIX] a quartic poly-
nomial. Then the two parabolas C1 and Cp meetinthe 4 points P; = (aj, a;2) for
i=1,..4, where the aj are the 4 roots of f.

Then the line Ljj = PiP; is given by

Ljj: X =@+ aj)X - aiaj),
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and the reducible conic L9 + L34 is given by
Y2 + (agap+azag)Y + (ag+a)(az+ag)X2 +sX +t = 0,

thatis, by Q1 - (a1+ap)(a3+ag)Qy = 0. Hence the 3 values of u/A for which the
conic AQq + Q2 breaks up as a line pair are

-(ag+ap)(az+ay), -(ag+agz)(ap+ay), -(ag+ag)(ap+az).

The cubic equation whose roots are these 3 quantities is called the auxilliary cubic
associated with the quartic; it can be calculated using the theory of elementary
symmetric functions; this is a fairly laborious procedure. On the other hand, the
geometric method sketched above gives an elegant derivation of the auxilliary cubic
which only involves evaluating a 3 x 3 determinant.

The above treatment is taken from [M.Berger, 16.4.10 and 16.4.11.1].

Exercises to §1.

1.1. Parametrise the conic C: (x2 + y2 = 5) by considering a variable line through
(2, 1) and hence find all rational solutions of x2 + y2 =5.
1.2. Let p be a prime; by experimenting with various p, guess a necessary and
sufficient condition for x2 + y2 = p to have rational solutions; prove your guess (a hint
is given after Ex. 1.9 below - bet you can't do it for yourself?!).
1.3. Prove the statement in (1.3), that an affine transformation can be used to put any
conic of R2 into one of the standard forms (a-1). (Hint: use a linear transformation
X - Ax 1o take the leading term ax?+ bxy + cy2 into one of +x2+ y2 or +x2 or 0;
then complete the square in x and y to get rid of as much of the linear part as possible.)
1.4. Make a detailed comparison of the affine conics in (1.3) with the projective conics
in (1.6).
1.5. Let k be any field of characteristic # 2, and V a 3-dimensional k-vector space;
let Q: V — k be a nondegenerate quadratic form on V. Show thatif 0 # ey € V
satisfies Q(e1) =0 then V has abasis eq, ey, €3 such that Q(xqeq + x9ep + x3€3) =
xqx3 + ax2. (Hint: work with the symmetric bilinear form ¢ associated to Q; since @
is nondegenerate, there is a vector €3 such that ¢(e1,e3) = 1. Now find a suitable e5.)
Deduce that a nonempty, nondegenerate conic C IP2k is projectively equivalent to
Xz=Y>).
1.6. Let k be a field with at least 4 elements, and C: (XZ = Y2)c sz; prove that if
Q(X, Y, Z) is a quadratic form which vanishes on C then Q = A(XZ - Y2). (Hint: if
you really can'’t do this for yourself, compare with the argument in the proof of Lemma
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2.5)
L7. In IR3, consider the two planes A: (Z = 1) and B: (X = 1); a line through 0
meeting A in (x,y, 1) meets B in (1, y/x, 1/x). Consider the map ¢: A-- B
defined by (x, y)i— (y' = y/%, z' = 1/x); what is the image under ¢ of

(i) theline ax =y +b; the pencil of paralle]l lines ax = y+b (fixed a and variable
b);

(i) circles (x—l)2 + y2 = ¢ forvariable ¢ (distinguishthe 3 cases ¢>1,c=1 and
c<1).

Try to imagine the above as a perspective drawing by an artist sitting at 0 € R 3, ona
plane (X = 1), of figures from the plane (Z = 1). Explain what happens to the points of
the two planes where ¢ and cp‘l are undefined.

1.8. Let Pq,.. P4 be distinct points of P2 withno 3 collinear. Prove that there is a
unique coordinate system in which the 4 points are (1, 0, 0), (0, 1, 0), (0, 0, 1) and
(1,1, 1). Find all conics passing through Py,.. P5, where Pg = (a, b, ¢) is some other
point, and use this to give another proof of Corollary 1.10 and Proposition 1.11.

1.9. In (1.12) there is a list of possible ways in which two conics can intersect. Write
down equations showing that each possibility really occurs. Find all the singular conics in
the corresponding pencils. (Hint: you will save yourself a lot of trouble by using
symmetry and a well-chosen coordinate system.)

Hint for 1.2: it is known from elementary number theory that -1 is a quadratic residue
modulo p ifandonlyif p=2 or p=1 mod4.

1.10. (Sylvester’s determinant). Let k be an algebraically closed field, and suppose
given a quadratic and cubic form in U, V asin (1.8):

qU, V) = agU2 +2(UV +a,V2,
(U, V) = bgU3 +b1UZV +byUV2 +b3V3.

Prove that q and ¢ have a common zero (M : 1) € Pl if and only if

30 31 3
ag a; aj
det ag a3 a1=20
bp by by by
by by by by

(Hint: Show that if q and ¢ have a common root then the 5 elements

25
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U2q, UVg, V2q, Uc and Vc
do not span the 5-dimensional vector space of forms of degree 4, and are therefore
linearly dependent. Conversely, use unique factorisation in the polynomial ring kU, V]
to say something about relations of the foorm Aq=Bc with A and B formsin U, V,
deg A =2, degB =1.)
1.11. Generalise the result of Ex. 1.10 to two formsin U, V of any degrees n and m.
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§2. Cubics and the group law

(1) Examples of parametrised cubics. Some plane cubic curves can be
parametrised, just as the conics:

Nodal cubic. C: (y2 = x3 +x2) c R2 is the image of the map ¢: R1 — R2 given
by t— (t2 -1,83- t) (check it and see);

Cuspidal cubic. C: (y2 =x3)c R2 is the image of o: R1 5 R2 given by
t— @2, 13):

lRl IR1
-+ +1
—2 . —2 .
-+ 0 0 -+ 0 0
-+ -1
nodal cubic cuspidal cubic
y2=x3+x2 y2=x3

Parametrised cubic curves
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Think about the singularities of the image curve, and of the map ¢. These examples
will occur throughout the course, so spend some time playing with the equations;
see Ex. 2.1-2.

(2.2) The curve (y2 = x(x - 1)(x - A)) has no rational parametrisation.

Parametrised curves are nice; for example, if you're interested in Diophantine
problems, you could hope for a rule giving all @-valued points, as in (1.1). The
parametrisation of (1.1) was of the form x = f(t), y = g(t), where f and g were
rational functions, that is, quotients of two polynomials.

Theorem. Let k be a field of characteristic # 2, and let A € k with A £0, 1; let
f, g € k(t) be rational functions such that

2 = g(g-1(g-A). (%)
Then f, g€ k.

This is equivalent to saying that there does not exist any nonconstant map
Rl-5C: (y2 = x(x - 1)(x - A)) given by rational functions. This reflects a very
strong 'rigidity’ property of varieties.

The proof of the theorem is arithmetic in the field k(t) using the fact that
k(t) is the field of fractions of the UFD Ktl. It's quite a long proof, so either be
prepared to study it in detail, or skip it for now (GOTO 2.4). InEx. 2.12, thereisa
very similar example of a nonexistence proof by arithmetic in Q.

Proof. Using the fact that klt] isa UFD, I write
f

r/s with r, s € klt] and coprime,

g = p/qwith p, q € kit] and coprime.

Clearing denominators, () becomes
2g3 = s2p(p - Q)(p - Ag).

Then since r and s are coprime, the factor s2 on the right-hand side must divide
q3, and in the same way, since p and q are coprime, the left-hand factor q3 must
divide s2. Therefore,

s2| g3 and g3 |s2, sothat s2=aq3 with ack

(a is a unit of K[t), therefore in k).
Then
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aq = (s/q)? isasquarein Kltl.
Also,
12 = ap(p - (p - Ag),

so that by considering factorisation into primes, there exist nonzero constants
b, ¢, d € k such that

bp, c(p-q), dp-Aqg)

are all squares in kitl. If I can prove that p, q are constants, then it follows from
what's already been said that r, s are also, proving the theorem. To prove that p, gq
are constants, set K for the algebraic closure of k; then p, q € Klt] satisfy the
conditions of the next lemma.

(2.3) Lemma. Let K be an algebraically closed field, p, q € Klt] coprime
elements, and assume that 4 distinct linear combinations (that is, Ap + pq for 4

distinct ratios (A: L) € [PiK) are squares in Klt}; then p,q€ K.

Proof (Fermat's method of 'infinite descent’). Both the hypotheses and conclusion
of the lemma are not affected by replacing p, q by

’

p' = ap+bq, ¢ = cp+dq,

with a,b,c,d € K and ad - bc # 0. Hence I can assume that the 4 given squares
are

P.P-4q p_M» q.
Then p = u2, q=v2, and u, v € Klt] are coprime, with
max {deg u, deg v} < max {deg p, deg q}.

Now by contradiction, suppose that max {deg p, deg g} >0 and is minimal among
all p, q satisfying the condition of the lemma. Then both of

pP-9q = w2 -v2 = (u-vu+v)
and
p-Aq = u2-AvZ = (u-pv)(u+pv)

(where | = YA) are squares in KIt], so that by coprimeness of u,v, I conclude that
eachof u-v,u+v,u-puv,u+ v are squares. This contradicts the minimality of
max {degp,degq}. Q.E.D.
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(2.4) Linear systems. Write S4 = {forms of degree d in (X, Y, Z)}; (recall that a
form is just a homogeneous polynomial). Any element F € S4 can be written in a
unique way as

F = T ajXYizk

with ajjk € k, and the sum taken over all i,j, k20 with i+j+k =d; this means
of course that Sy is a k-vector space with basis

Zd

Zx 2ty

xXz Xz L Yz
X Xy X% . Y

and in particular, dim S 4 = (dgz). For Pq,..Pp € [P2, let

Sq(P{,.-Pp) = {FeSq|FP) =0 fori=1,.n} c 4.

Each of the conditions F(Pj) = 0, (or more precisely, F(Xj, Yj, Zj) = 0, where
P; = (X;:Yj:Z;)) is one linear condition on F, so that S4(P1... Pp) is a vector

space of dimension > (d~21-2) -n.

(2.5) Lemma. Suppose that k is an infinite field, and let F € Sqg.

(i) Let Lc |P2k be a line; if F=0 on L, then F is divisible in
kIX, Y, Z] by the equation of L. Thatis, F = HF' where H is the equation of L
and F € Sq4_1.

(ii) Let Cc IP2k be a nonempty nondegenerate conic; if F=0 on C,
then F is divisible in k[X, Y, ZI by the equation of C. Thatis, F = Q-F' where Q
is the equation of C and F' € Sg4_».

If you think this statement is obvious, congratulations on your intuition: you
have just guessed a particular case of the Nullstellensatz. Now find your own proof
(GOTO 2.6).
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Proof. (i) By a change of coordinates, I can assume H = X. Then for any F € Sq,
there exists a unique expression F = X-F'q_1 + G(Y, Z): just gather together all the
monomials involving X into the first summand, and what's left must be a
polynomialin Y,Z only. Now F=0 on L& G=0 on L < G(Y,Z) = 0.
The last step holds because of (1.8): if G(Y,Z) # O then it has at most d zeros on
lPlk, whereas if k is infinite, then so is IP1k.

(i) By a change of coordinates, Q = XZ - Y2. Now let me prove that for
any F € Sy, there exists a unique expression F = QF4_2 + AX, Z) + YB(X, Z):
if I just substitute (XZ - Q) for Y2 wherever it occurs in F, what's left has
degree <1 in Y, and is therefore of the form A(X, Z) + YB(X, Z). Now as in
(1.7), C is the parametrised conic given by X = U2, Y = UV, Z = V2, so that

F=0on C & AU2,V2)+UVBU2,V2)=0 on C

« AU2,V2)+UVBU2,V2)=0€ekU,V] & AX,Z)=B(XZ) =0.

Here the last equality comes by considering separately the terms of even and odd
degrees in the form A(U2, V2)+ UVB(U2,V2). QE.D.
Ex. 2.2 gives similar cases of ‘explicit’ Nullstellensatz.

Corollary. Let L: (H=0) c lP2k be a line (respectively C: (Q = 0) IP2k a
nondegenerate conic); suppose that points P4,.. Pp € !P2k are given, and consider
Sq(P1,.. Pp) for some fixed d. Then
(i) If P{..Pa€L, Pagy1,..Pp¢L and a>d, then
Sd(Pi,.. Pn) = H’Sd_l(Pa+1,.. Pn).
(ii)) If P{,.P3€C, Py41,..Pp¢ C and a>2d, then

Sq(P1,..Pp) = Q-S4-2(Pa+1,--Pp)

Proof. (i) If F is homogeneous of degree d, and the curve D: (F = 0) meets L
in points P{,..P3 with a>d, then by (1.9), I must have L € D, so that by the
lemma, F = H-F; now since Pay1,.. Py € L, obviously F' € Sq_1(P 341,.. Pp)-
(ii) is exactly the same. Q.E.D.
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(2.6) Proposition. Let k be an infinite field, and P1,.. Pg € IP2k distinct points;
suppose that no 4 of P4,. Pg are collinear, and no 7 of them lie on a non-
degenerate conic; then

dim S3(P4,.. Pg) = 2.

Proof. For brevity, let me say that a set of points are conconic if they all lie on a
nondegenerate conic. The proof of (2.6) breaks up into several cases.
Main case. No 3 points are collinear, no 6 conconic. This is the ‘general position’
case.

Suppose for a contradiction that dim S3(P1,.. Pg) 23, and let Pg, P1g be
distinct points on the line L = P1P). Then

dim S3(P1,..P1p) = dim S3(P{,.Pg)-2 =2 1,

so that there exists 0 # F € S3(P1,.. P1g). By Corollary 2.5, F = H-Q, with
Q € S7(P3,.. Pg). Now I have a contradiction to the case assumption: if Q is non-
degenerate then the 6 points P3,.. Pg are conconic, whereas if Q is a line pair or
a double line, then at least 3 of them are collinear.

First degenerate case. Suppose P{,P7,P3 € L are collinear, and let L:(H = 0).
Let Pg be a 4th point on the line L. Then by Corollary 2.5,

S3(P{,..Pg) = H-S2(P4.,..Pg).

Also, since no 4 of P4,. Pg are collinear, by Corollary 1.11, dim S»(P4,.. Pg)
=1, and then dim S3(P1,.. Pg) = 1, which implies dim S3(P1,.. Pg)<2.

Second degenerate case. Suppose P1,..Pg€ C are conconic, with C: (Q = 0) a
nondegenerate conic. Then choose Pg € C distinct from Pq,.. Pg. By Corollary 2.5
again,

S3(P1... Pg) = Q-S1(P7,Pg);



